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Abstract Past studies of noble gas concentrations in the deep ocean have revealed widespread, several
percent undersaturation of Ar, Kr, and Xe. However, the physical explanation for these disequilibria
remains unclear. To gain insight into undersaturation set by deep-water formation, we measured heavy
noble gas isotope and elemental ratios from the deep North Pacific using a new analytical technique. To our
knowledge, these are the first high-precision seawater profiles of **Ar/>*®Ar and Kr and Xe isotope ratios. To
interpret isotopic disequilibria, we carried out a suite of laboratory experiments to measure solubility
fractionation factors in seawater. In the deep North Pacific, we find undersaturation of heavy-to-light Ar and
Kr isotope ratios, suggesting an important role for rapid cooling-driven, diffusive air-to-sea gas transport in
setting the deep-ocean undersaturation of heavy noble gases. These isotope ratios represent promising new
constraints for quantifying physical air-sea gas exchange processes, complementing noble gas
concentration measurements.

Plain Language Summary The deep ocean inherits its dissolved gas content from exchange with
the atmosphere at high latitudes and from biological and chemical processes. Noble gases, which are
unaffected by biology and chemistry, are useful tools for understanding physical gas exchange. Past
observations of dissolved noble gases throughout the deep ocean have revealed that Ar, Kr, and Xe
concentrations fall below expected concentrations for water at solubility equilibrium with the atmosphere.
However, a physical explanation for this well-documented undersaturation of noble gases remains unclear.
Here we have measured the isotope ratios of Ar, Kr, and Xe in the deep North Pacific as new tools to
investigate physical mechanisms of disequilibrium. Our findings suggest that rapid cooling and sinking of
surface water at high latitudes, driving air-to-sea gas transport with insufficient time for equilibration, is a
key process in setting the observed deep-ocean undersaturation of noble gases.

1. Introduction

Due to their chemical and biological inertness, dissolved noble gases in seawater are useful tools for disen-
tangling physical from biogeochemical processes (Hamme et al., 2017; Stanley & Jenkins, 2013). Among
other applications, noble gases have been used to constrain bubble injection (e.g., Emerson & Bushinsky,
2016; Stanley et al., 2009), diapycnal mixing rates (e.g., Ito et al., 2007), oxygen production (e.g., Spitzer &
Jenkins, 1989), nutrient fluxes (e.g., Stanley et al., 2015), and the strength of the carbon solubility pump
(Hamme et al., 2019; Nicholson et al., 2010). In the deep ocean, solubility disequilibria of noble gas concen-
trations display a globally consistent pattern (Hamme & Severinghaus, 2007; Jenkins et al., 2016; Loose et al.,
2016): supersaturation of light, less soluble noble gases (He and Ne), and undersaturation of heavy, more
soluble noble gases (Ar, Kr, and Xe). Deep-ocean Ne supersaturation is well understood to result from bub-
ble injection during surface air-sea gas exchange or subsurface melting of glacial ice (Hamme & Emerson,
2002; Loose & Jenkins, 2014; Well & Roether, 2003). However, the cause of heavy noble gas undersaturation
in the deep ocean remains less clear.

Two distinct physical explanations have been proposed, each of which concerns the strong temperature
dependences of heavy noble gas solubilities. The first theory suggests that disequilibrium arises from incom-
plete air-to-sea transport of heavy noble gases during deep-water formation (Hamme et al., 2017; Hamme &
Severinghaus, 2007; Nicholson et al., 2010). In this hypothesis, rapid wintertime cooling of the mixed layer
increases gas solubilities, driving diffusive uptake by surface waters until they subduct, at which point gas
exchange ceases and the signal of undersaturation is transported to the deep ocean. The second theory,
which is most relevant to Antarctic sourced deep waters, suggests that disequilibrium is caused by
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subsurface melting of glacial ice (Loose et al., 2016; Loose & Jenkins, 2014). In this hypothesis, the latent
heat required for ice shelf melting is supplied by seawater, which cools and inherits gas from air bubbles lib-
erated from melted ice, which completely dissolve under hydrostatic pressure. Undersaturation of Ar, Kr,
and Xe therefore emerges because increases in solubility due to latent cooling are not fully compensated
by the addition of gas from ice bubbles.

Here we explore the potential for isotope ratios of Ar, Kr, and Xe to provide constraints on mechanisms of
deep-ocean heavy noble gas disequilibrium. While *°Ar/*°Ar ratios in seawater have been measured once
before at <1%. precision (Nicholson et al., 2010), recent analytical developments have enabled high-
precision measurement of dissolved **Ar/**Ar and stable Kr and Xe isotope ratios in water (Seltzer et al.,
2019). Ar, Kr, and Xe isotope ratios exhibit a range of sensitivities to bubble injection, cooling, and diffusive
gas uptake as a result of their different solubility and kinetic fractionation factors (Seltzer et al., 2019). In this
study, we analyzed Ar, Kr, and Xe isotope ratios at high precision in a small set of seawater samples collected
from the deep North Pacific. We interpret our observations using a framework for isotopic fractionation that
extends existing idealized models of bulk gas disequilibrium. This framework is informed by recent determi-
nations of isotopic fractionation factors in freshwater (Seltzer et al., 2019) as well as new measurements of
seawater isotopic solubility fractionation presented in this study.

2. Methods

2.1. Laboratory Determination of Isotopic Solubility Fractionation in Seawater

Solubility fractionation factors (ctso;) of Ar, Kr, and Xe isotope ratios in seawater were measured via closed-
system laboratory equilibration experiments at Scripps Institution of Oceanography (SIO) in early 2019. a
is defined at a given temperature and salinity as

— ( diss (1)

for a heavy isotope (H) and light isotope (L) at solubility equilibrium between the dissolved phase and gas
phase at 100% relative humidity. In each experiment, 200-400 ml of seawater from the SIO pier (sterilized
by ultraviolet light and a series of 100- and 25-pm filter bags) was equilibrated with a ~2-L noble gas head-
space (either pure Ar or Ar-Xe/Ar-Kr mixtures) at ~1 atm for 36 hr at a constant temperature between ~2 and
25 °C following the closed system equilibration method of Seltzer et al. (2019). At the end of each experi-
ment, a 2-ml headspace gas sample and 10- to 30-ml equilibrated seawater sample were collected.
Dissolved gases from the seawater sample were quantitatively extracted by magnetic stirring under vacuum,
and dissolved gas and headspace samples were each gettered using SAES Zr-Al sheets and Ti sponge at 900
°C for 1 hr. Isotope ratios in purified dissolved gas and headspace samples were analyzed on a Thermo-
Finnigan MAT 253 mass spectrometer against a common reference gas. In total, 12 experiments were carried
out: five each for Kr and Ar isotopes (at 34.6 + 0.1 psu and 35.4 + 0.1 psu, respectively), and two for Xe iso-
topes (at 36.8 + 0.1 psu).

Figure 1 shows the results of these seawater solubility fractionation experiments as € values (where g5, = a
— 1, in per mil) along with freshwater £ values (Seltzer et al., 2019). For Ar, Kr, and Xe at a given temperature,
we find greater relative enrichment of heavy-to-light isotopes dissolved in seawater than in freshwater. This
finding is consistent with “He/>He solubility fractionation, which is also greater in seawater than in fresh-
water (Benson & Krause, 1980). In our experiments, the salinity effect on solubility fractionation is most pro-
nounced for Ar isotopes and is insignificant for Kr and Xe isotopes. Surprisingly, the isotopic salinity effect
does not appear to be strictly mass dependent, as the seawater-freshwater e difference for **Ar/*°Ar (two
mass-unit difference) is similar in magnitude to that of 4Ar/3%Ar (four mass-unit difference).

2.2. Seawater Sample Collection and Analysis

Seawater samples were collected from 10-L Niskin bottles on Hawaii Ocean Time-series (HOT) cruise 303 in
June 2018. In total, 13 samples were collected at Station ALOHA (22.75°N 158°W) ranging from 250-m to
4.7-km depth. A mixed layer sample was collected from Station Kahe (21.34°N 158.27°W) at 6-m depth.
Seawater was collected in preevacuated 2-L glass flasks following procedures described by Seltzer et al.
(2019), based on a method for smaller dissolved gas samples (Hamme & Emerson, 2004).
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Figure 1. Ar, Kr, and Xe isotopic solubility fractionation in seawater (mar-
kers and solid lines: this study) and freshwater (dashed lines: Seltzer et al.,
2019) versus temperature. The standard errors of seawater &y, values for the
isotope ratios considered in this study range from +4 per meg for 40ar/*CAr
to +7 per meg for 86Kr/ 82K1‘. Error bars indicate +1-c and +1-standard
error ranges of individual experiments and temperature trend lines,
respectively.

At SIO, dissolved gases were quantitatively extracted by sparging with
ultrahigh purity helium gas in a recirculating loop, trapping all nonhe-
lium gases in a stainless-steel dip tube immersed in liquid helium
(Seltzer et al., 2019). Extracted gases were then purified by gettering with
SAES Zr-Al sheets at 900 °C for 130 min. For all samples collected below
500 m, stable isotope and elemental ratios of Ar, Kr, and Xe were analyzed
on a Thermo-Finnigan MAT 253. Due to insufficient gas content, only Ar
isotopes and elemental ratios were measured in the shallowest two sam-
ples at 6 and 250 m, which were 26.8 and 14.5 °C, respectively. Prior to

mass spectrometry, dissolved Ar concentrations were measured
by manometry.

To interpret HOT 303 measurements, we report dissolved gas ratios and
concentrations relative to solubility equilibrium at 1 atm and 100% rela-
tive humidity using the newly determined noble gas solubility functions
from Jenkins et al. (2019) and the isotopic solubility fractionation factors
in seawater determined in this study. These solubility anomalies are
defined for gas concentrations, AC, and ratios, Ad, as follows:

c
Agzmﬂ -1 (3)
asol(su T)

where C is a measured dissolved gas concentration (umol/kg), Ceq is a

concentration at solubility equilibrium at potential temperature 6 (°C) and salinity S (psu) assuming equili-
bration with unfractionated atmospheric air at 1 atm pressure and 100% relative humidity. In equation (3), R

e 13650 /1205 4t 861, /B2, o BBAL /A e 40Ar/36Ar‘

HH HH &
=] “, HOH \‘\
S ian 8 i P ‘\‘
1000 - o | - .
i b ! - T
T 20000 i ';
=~ e e @ 1
= ¢ "
s '
% i =
a > : (=] L] :
3000 y :
e - .
4000 b ° «
e ‘ o ‘ T
0 0.2 0.4 0.6 0.8 1 1.2
d (%o)

Figure 2. Measured HOT 303 profiles of dissolved Ar, Kr, and Xe isotope
ratios, relative to atmospheric air (in %o). Error bars indicate standard
errors of depth-mean values. An outlier Xe isotope measurement at ~1.6 km
is shaded white. Dashed lines indicate our measured seawater solubility
equilibria (gg0).

is a gas or isotope ratio and R,, is that ratio in the well-mixed
atmosphere.

In this study, measured gas ratios are reported either as (a) § values refer-
enced to atmospheric air, or (b) AS values referenced to dissolved ratios at
solubility equilibrium. For each of these variables, we account for uncer-
tainties based on measurement reproducibility, error in systematic mass
spectrometry and extraction system corrections, error in atmospheric
reference gas analysis, and uncertainty in oy, (which only affects AS).
Details are provided in the supporting information section S1.

3. Observations From the Deep North Pacific (HOT
303, June 2018)

Figure 2 shows measured depth profiles of HOT 303 Ar, Kr, and Xe iso-
tope ratios beside solubility equilibrium values. Across eight samples col-
lected from the deep ocean (defined hereafter as below 2,000 m), we
observe mean 8%/;6Ar, 833/56Ar, 8%%/g,Kr, and 8%/,,0Xe of 1.065 +
0.013%o, 0.582 + 0.013%o, 0.220 + 0.009%0, and 0.177 + 0.003%. (+10).
Replicate 2-L samples were collected at ~1,000, 2,800, 4,000, and 4,700
m, and single samples were collected at all other depths. Both 5%/;5Ar
and 8/;4Ar increase from the surface to deep ocean, and Kr and Xe iso-
tope ratios are relatively constant with depth from ~600 to 4,700 m.

Solubility anomalies of measured isotope and gas ratios, Ad and AKr/Ar,
are shown in Figure 3 as a function of depth. In the deep ocean, we find
that Ar and Kr isotope ratios fall significantly below solubility equilibrium
(at the 95% confidence level). Mean A8**/36Ar, AS>%/56Ar, AS%/g,Kr
below 2000 m are —125 + 10 per meg, —64 + 13 per meg, —37 + 15 per
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0.0001%. Deep-ocean mean A8'*%/,0Xe is —2 + 25 per meg. While uncer-
tainties prevent meaningful interpretation of this small value, we suggest
that future gains in analytical precision and large-volume sampling cam-
paigns could resolve Xe isotopic disequilibria at the single per meg level.
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The AKr/Ar determined in this study closely matches AKr/Ar measured
from an August 2004 HOT cruise (HOT 162, Hamme & Severinghaus,
2007). In the deep-ocean, mean HOT 303 and HOT 162 AKr/Ar are
—6.6%0 and —6.2%o, respectively, relative to recently redetermined Kr
and Ar solubilities in seawater (Jenkins et al., 2019). In the surface ocean,
we observe AKr/Ar near zero (~0.3%0) and negative A8/ 6Ar and AS%®/
36AT (—107 + 20 per meg and —51 + 20 per meg, respectively). The surface
and intermediate ocean data will be discussed in a separate study.
However, here we note that although A8*/;6Ar appears similar in the
warm surface ocean and cold deep ocean, the physical mechanisms driv-

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
| . . . . ey . . . .
X ing isotopic disequilibrium in the warm surface ocean are distinct from

¢ W

-150

Figure 3. Solubility disequilibria for measured stable isotope ratios (left
panel) and Kr/Ar ratios (right panel). Solid lines and shaded regions indi-
cate mean and standard error of deep-ocean (>2,000 m) disequilibria. All
measurements are from HOT 303, except for the HOT 162 Kr/Ar data
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(Hamme & Severinghaus, 2007).

0 0 1'0 the deep ocean (supporting information section S2).
O -

AKr/Ar (%) 4. Interpreting Solubility Disequilibria: A Unified

Framework for Dissolved Gas Concentrations (AC)
and Ratios (Ad)

To gain insight into processes setting the observed isotopic disequilibria in
the deep North Pacific, we have extended existing idealized equations for
bulk gas disequilibria, AC, to gas ratios. Prior studies have proposed linear
combinations of AC for individual disequilibrium mechanisms, each act-
ing on initially air-saturated seawater at 100% relative humidity and 1 atm pressure. These processes include
warming or cooling (Hamme et al., 2017; Hamme & Emerson, 2002; Hamme & Severinghaus, 2007), bubble
injection (Emerson & Bushinsky, 2016; Liang et al., 2013; Nicholson et al., 2011; Stanley et al., 2009), sub-
marine melting of glacial ice (Loose & Jenkins, 2014), diapycnal mixing (Ito et al., 2007; Ito & Deutsch,
2006; Spitzer & Jenkins, 1989), and other processes both for cases of no gas exchange (e.g., in the ocean inter-
ior or under sea ice) or diffusive air-sea gas exchange such that a quasi steady state is reached at which AC'is
temporally constant. To extend equations for AC to AS, we make use of an alternate definition for Ad for a
ratio of gases or isotopes i and j:

ns_ Ci/Cieg | _ACiH1
Cj/Cieq ACj +1

“4)

One key benefit of considering disequilibrium of ratios rather than concentrations is that ratios are unaf-
fected by barometric pressure, which can be several percent below 1 atm in high-latitude regions of deep-
water formation (Loose et al., 2016; Well & Roether, 2003).

Figure 4 shows the influence of seven distinct processes on A8%/g,Kr, A5/ 4Ar, and on AKr/Ar, and
ANe/Ar. (Note: in the supporting information section S3, we define AC for each process formally.) The dis-
equilibria modeled in Figure 4 result from the following processes acting on an initially air-saturated 2-°C,
35-psu, 100-m mixed layer:

1. cooling and warming of 2 °C without air-sea gas exchange

2. constant cooling of 1.2 °C/month inducing a quasi steady state diffusive air-to-gas flux to maintain con-
stant AC under 10 m/s winds (with gas exchange parameterized by the Wanninkhof, 2014)

3. the addition of 0.5% glacial meltwater by subsurface ice-shelf melting using parameters given in Loose
et al. (2016) and assuming a 100-m firn thickness

4. small bubble dissolution (0.025 mol,;,/m*) without air-sea diffusive gas exchange

5. steady state small bubble dissolution (0.125 molair-m_zday_l) balanced by diffusive reexchange with the
atmosphere
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Figure 4. Idealized expectations for isotope and elemental ratio disequili-
bria resulting from seven processes detailed in section 4. For each process,
an initially air-saturated (AC = 0, A8 = 0) 100-m mixed layer at 2 °C and 35

psu is assumed.
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Figure 5. Possible combination of disequilibrium mechanisms that may
explain HOT 303 deep ocean observations. In this scenario, rapid cooling

(1.2 °C/month) of the surface ocean occurs after the deepening of a shallow
summer mixed layer and entrainment of radiatively warmed (by 2 °C) water.

-10 0 10
AKr/Ar (%o)

+ 20 per meg in the mixed layer at Station Kahe. In contrast, above cold
water, water vapor flux fractionation is greatly reduced and therefore is
only a minor contributor to isotopic fractionation in the cold, high-lati-
tude-sourced deep ocean.

Four of the processes shown in Figure 4 yield negative AKr/Ar and posi-
tive ANe/Ar, consistent with global deep-ocean observations (Hamme
et al., 2017; Hamme & Severinghaus, 2007; Jenkins et al., 2016; Loose

et al., 2016). Of these processes, only one causes substantially negative Ad for Ar and Kr isotope ratios:
rapid cooling-induced diffusive gas uptake. Cooling of the mixed layer drives air-to-sea diffusion, inducing
kinetic fractionation of isotope ratios (negative AJ) due to the faster diffusivities of light isotopes.
Critically important is the difference between cooling-driven gas uptake and glacial meltwater input,

40

20

10

--10

--30
-10 0 10

AKr/Ar (%0)

ANe/Ar (%)

Injection and complete dissolution of air bubbles (0.025 mol,;,/ m3) and
diffusive gas uptake lead to fractionation of isotope and elemental ratios

prior to subduction.

the two leading hypotheses for the undersaturation of heavy noble gases
in the deep ocean. Whereas both processes yield ~ —1% AKr/Ar, consis-
tent with observations, cooling-driven diffusive gas uptake and glacial
meltwater input fractionate isotope ratios in diverging directions (e.g.,
—90 per meg vs. +38 per meg for §"%/;5Ar). Glacial meltwater input
causes positive A8 because gravitational enrichment of firn air
(Schwander, 1989) prior to occlusion in bubbles fractionates §/;5Ar
and 8%¢/g,Kr (~2%. over a 100-m firn column) more strongly than does
solubility fractionation (g5 ~ 1.2%0 and 0.25%o, respectively). The deep
HOT data therefore suggest an important role for rapid cooling-driven
diffusive gas uptake in setting the undersaturation of heavy noble gases
in the deep ocean.

In Figure 5, we present a possible combination of processes that may
simultaneously explain these isotopic observations as well as previous
Kr/Ar and Ne/Ar measurements in the deep ocean at Station ALOHA
(Hamme & Severinghaus, 2007). In this deep-water formation scenario,
which most resembles North Atlantic-like deep convection, mixed layer
deepening during late fall first entrains radiatively warmed water at the
base of the shallower summer mixed layer, leading to supersaturation.
Superimposed on this supersaturation is a small, steady state water vapor
flux fractionation in the cold air-side molecular sublayer. Then, as the sur-
face ocean rapidly cools, noble gases are taken up both by bubble-
mediated and diffusive exchange before the surface layer sinks and loses
contact with the atmosphere, locking in signals of kinetic isotopic fractio-
nation and bulk undersaturation. We assume here that all bubbles com-
pletely dissolve; however, we note that partial dissolution of bubbles
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(e.g., Keeling, 1993) may be another source of kinetic fractionation. Importantly, subsurface melting of gla-
cial ice is not required in this scenario.

We suggest that future observations of deep-ocean noble gas isotopic disequilibria over a wide spatial range
may reveal differences in the relative importance of the North Atlantic and Southern Oceans in ventilating
the deep ocean (Gebbie et al., 2010; Johnson, 2008; Khatiwala et al., 2012; Rae & Broecker, 2018) due to their
considerably different formation and gas exchange processes, which likely lead to different fingerprints of
noble gas elemental and isotopic fractionation. Whereas gas exchange during deep-water formation in the
North Atlantic is fairly well characterized (e.g., Hamme et al., 2017; Wolf et al., 2018), the physical mechan-
isms of Antarctic deep-water formation and their impact on gas exchange are poorly understood. Future
measurements of noble gas isotopes in recently formed Antarctic bottom waters may thus shed light on
gas exchange processes and improve predictions of the physical components of solubility disequilibrium
for gases such as O, and CO,. Climate model simulations have been used to understand and predict past
and future changes in global air-sea transport of O, and CO, (Ito & Follows, 2013; Khatiwala et al., 2019).
Precise knowledge of deep-ocean noble gas isotopic disequilibria provides a benchmark to evaluate climate
model simulations of air-sea gas transport during deep-water formation.

5. Conclusions

In this study, we introduced a framework for investigating the influence of physical gas-exchange mechan-
isms during deep-water formation on the isotopic composition of heavy noble gases. We carried out experi-
ments to determine isotopic solubility fractionation factors in seawater and discovered slightly greater
isotopic discrimination in seawater than in freshwater. To explore mechanisms of inert gas disequilibrium
caused by deep-water formation, we collected and analyzed a small set of samples from the deep North
Pacific and found undersaturation of heavy-to-light Ar and Kr isotope ratios, which point to the importance
of rapid cooling-driven diffusive gas uptake. We suggest that future measurements of Ar, Kr, and Xe isotope
ratios, with moderate gains in analytical precision and paired with measurements of He, Ne, Ar, Kr, and Xe,
will provide additional sensitive constraints for quantifying physical drivers of deep-ocean ventilation.
Future measurements may better inform the saturation and transport of biogeochemically important gases
like O, and CO, as well as ventilation age tracers like CFCs and SFg.
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